An Automatic System to Discriminate Malignant from Benign Massive Lesions on Mammograms

نویسندگان

  • A. Retico
  • P. Delogu
  • P. Kasae
چکیده

Mammography is widely recognized as the most reliable technique for early detection of breast cancers. Automated or semi-automated computerized classification schemes can be very useful in assisting radiologists with a second opinion about the visual diagnosis of breast lesions, thus leading to a reduction in the number of unnecessary biopsies. We present a computer-aided diagnosis (CADi) system for the characterization of massive lesions in mammograms, whose aim is to distinguish malignant from benign masses. The CADi system we realized is based on a three-stage algorithm: a) a segmentation technique extracts the contours of the massive lesion from the image; b) sixteen features based on size and shape of the lesion are computed; c) a neural classifier merges the features into an estimated likelihood of malignancy. A dataset of 226 massive lesions (109 malignant and 117 benign) has been used in this study. The system performances have been evaluated terms of the receiver-operating characteristic (ROC) analysis, obtaining Az = 0.80 ± 0.04 as the estimated area under the ROC curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic System to Discriminate Malignant from Benign Massive Lesions in Mammograms

Evaluating the degree of malignancy of a massive lesion on the basis of the mere visual analysis of the mammogram is a non-trivial task. We developed a semi-automated system for massive-lesion characterization with the aim to support the radiological diagnosis. A dataset of 226 masses has been used in the present analysis. The system performances have been evaluated in terms of the area under t...

متن کامل

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

Risk-based Stratification of Salivary Gland Lesions on Cytology: An Institutional Experience

Background and objective: Fine needle aspiration cytology (FNAC) of salivary gland lesions is an accepted and useful diagnostic tool to differentiate between benign and malignant lesions. Majority of the neoplasms are benign, and specific diagnosis on cytology can be made in most of the cases. However, the utility is limited by the overlapping and heterogeneous morphol...

متن کامل

An automatic method for the identification and interpretation of clustered microcalcifications in mammograms.

We investigated a method for a fully automatic identification and interpretation process for clustered microcalcifications in mammograms. Mammographic films of 100 patients containing microcalcifications with known histology were digitized and preprocessed using standard techniques. Microcalcifications detected by an artificial neural network (ANN) were clustered and some cluster features serve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007